47 research outputs found

    Practical guidance for applying the ADNEX model from the IOTA group to discriminate between different subtypes of adnexal tumors.

    Get PDF
    All gynecologists are faced with ovarian tumors on a regular basis, and the accurate preoperative diagnosis of these masses is important because appropriate management depends on the type of tumor. Recently, the International Ovarian Tumor Analysis (IOTA) consortium published the Assessment of Different NEoplasias in the adneXa (ADNEX) model, the first risk model that differentiates between benign and four types of malignant ovarian tumors: borderline, stage I cancer, stage II-IV cancer, and secondary metastatic cancer. This approach is novel compared to existing tools that only differentiate between benign and malignant tumors, and therefore questions may arise on how ADNEX can be used in clinical practice. In the present paper, we first provide an in-depth discussion about the predictors used in ADNEX and the ability for risk prediction with different tumor histologies. Furthermore, we formulate suggestions about the selection and interpretation of risk cut-offs for patient stratification and choice of appropriate clinical management. This is illustrated with a few example patients. We cannot propose a generally applicable algorithm with fixed cut-offs, because (as with any risk model) this depends on the specific clinical setting in which the model will be used. Nevertheless, this paper provides a guidance on how the ADNEX model may be adopted into clinical practice

    O-RADS US risk stratification and management system: A consensus guideline from the ACR ovarian-adnexal reporting and data system committee.

    Get PDF
    The Ovarian-Adnexal Reporting and Data System (O-RADS) US risk stratification and management system is designed to provide consistent interpretations, to decrease or eliminate ambiguity in US reports resulting in a higher probability of accuracy in assigning risk of malignancy to ovarian and other adnexal masses, and to provide a management recommendation for each risk category. It was developed by an international multidisciplinary committee sponsored by the American College of Radiology and applies the standardized reporting tool for US based on the 2018 published lexicon of the O-RADS US working group. For risk stratification, the O-RADS US system recommends six categories (O-RADS 0-5), incorporating the range of normal to high risk of malignancy. This unique system represents a collaboration between the pattern-based approach commonly used in North America and the widely used, European-based, algorithmic-style International Ovarian Tumor Analysis (IOTA) Assessment of Different Neoplasias in the Adnexa model system, a risk prediction model that has undergone successful prospective and external validation. The pattern approach relies on a subgroup of the most predictive descriptors in the lexicon based on a retrospective review of evidence prospectively obtained in the IOTA phase 1-3 prospective studies and other supporting studies that assist in differentiating management schemes in a variety of almost certainly benign lesions. With O-RADS US working group consensus, guidelines for management in the different risk categories are proposed. Both systems have been stratified to reach the same risk categories and management strategies regardless of which is initially used. At this time, O-RADS US is the only lexicon and classification system that encompasses all risk categories with their associated management schemes

    Predicting the risk of malignancy in adnexal masses based on the Simple Rules from the International Ovarian Tumor Analysis group

    Get PDF
    BACKGROUND: Accurate methods to preoperatively characterize adnexal tumors are pivotal for optimal patient management. A recent metaanalysis concluded that the International Ovarian Tumor Analysis algorithms such as the Simple Rules are the best approaches to preoperatively classify adnexal masses as benign or malignant. OBJECTIVE: We sought to develop and validate a model to predict the risk of malignancy in adnexal masses using the ultrasound features in the Simple Rules. STUDY DESIGN: This was an international cross-sectional cohort study involving 22 oncology centers, referral centers for ultrasonography, and general hospitals. We included consecutive patients with an adnexal tumor who underwent a standardized transvaginal ultrasound examination and were selected for surgery. Data on 5020 patients were recorded in 3 phases from 2002 through 2012. The 5 Simple Rules features indicative of a benign tumor (B-features) and the 5 features indicative of malignancy (M-features) are based on the presence of ascites, tumor morphology, and degree of vascularity at ultrasonography. Gold standard was the histopathologic diagnosis of the adnexal mass (pathologist blinded to ultrasound findings). Logistic regression analysis was used to estimate the risk of malignancy based on the 10 ultrasound features and type of center. The diagnostic performance was evaluated by area under the receiver operating characteristic curve, sensitivity, specificity, positive likelihood ratio (LR+), negative likelihood ratio (LR-), positive predictive value (PPV), negative predictive value (NPV), and calibration curves. RESULTS: Data on 4848 patients were analyzed. The malignancy rate was 43% (1402/3263) in oncology centers and 17% (263/1585) in other centers. The area under the receiver operating characteristic curve on validation data was very similar in oncology centers (0.917; 95% confidence interval, 0.901-0.931) and other centers (0.916; 95% confidence interval, 0.873-0.945). Risk estimates showed good calibration. In all, 23% of patients in the validation data set had a very low estimated risk (<1%) and 48% had a high estimated risk (≥30%). For the 1% risk cutoff, sensitivity was 99.7%, specificity 33.7%, LR+ 1.5, LR- 0.010, PPV 44.8%, and NPV 98.9%. For the 30% risk cutoff, sensitivity was 89.0%, specificity 84.7%, LR+ 5.8, LR- 0.13, PPV 75.4%, and NPV 93.9%. CONCLUSION: Quantification of the risk of malignancy based on the Simple Rules has good diagnostic performance both in oncology centers and other centers. A simple classification based on these risk estimates may form the basis of a clinical management system. Patients with a high risk may benefit from surgery by a gynecological oncologist, while patients with a lower risk may be managed locally

    Imaging in gynecological disease (17): ultrasound features of malignant ovarian yolk sac tumors (endodermal sinus tumors)

    Get PDF
    Objective To describe the clinical and sonographic characteristics of malignant ovarian yolk sac tumors (YSTs). Methods In this retrospective multicenter study, we included 21 patients with a histological diagnosis of ovarian YST and available transvaginal ultrasound images and/or videoclips and/or a detailed ultrasound report. Ten patients identified from the International Results All cases were pure YSTs, except for one that was a mixed tumor (80% YST and 20% embryonal carcinoma). Median age at diagnosis was 25 (interquartile range (IQR), 19.5–30.5) years. Seventy-six percent (16/21) of women had an International Federation of Gynecology and Obstetrics (FIGO) Stage I–II tumor at diagnosis. Fifty-eight percent (11/19) of women felt pain during the ultrasound examination and one presented with ovarian torsion. Median serum α-fetoprotein (S-AFP) level was 4755 (IQR, 1071–25 303) μg/L and median serum CA 125 level was 126 (IQR, 35–227) kU/L. On ultrasound assessment, 95% (20/21) of tumors were unilateral. The median maximum tumor diameter was 157 (IQR, 107–181) mm and the largest solid component was 110 (IQR, 66–159) mm. Tumors were classified as either multilocular-solid (10/21; 48%) or solid (11/21; 52%). Papillary projections were found in 10% (2/21) of cases. Most (20/21; 95%) tumors were well vascularized (color score, 3–4) and none had acoustic shadowing. Malignancy was suspected in all cases, except in the patient with ovarian torsion, who presented a tumor with a color score of 1, which was classified as probably benign. Image and videoclip quality was considered as adequate in 18/21 cases. On review of the images and videoclips, we found that all tumors contained both solid components and cystic spaces, and that 89% (16/18) had irregular, still fine-textured and slightly hyperechoic solid tissue, giving them a characteristic appearance. Conclusion Malignant ovarian YSTs are often detected at an early stage, in young women usually in the second or third decade of life, presenting with pain and markedly elevated S-AFP. On ultrasound, malignant ovarian YSTs are mostly unilateral, large and multilocular-solid or solid, with fine-textured slightly hyperechoic solid tissue and rich vascularization. © 2020 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of the International Society of Ultrasound in Obstetrics and Gynecology

    Validation of the performance of International Ovarian Tumor Analysis (IOTA) methods in the diagnosis of early stage ovarian cancer in a non-screening population

    Get PDF
    Background: The aim of this study was to assess and compare the performance of different ultrasound-based International Ovarian Tumor Analysis (IOTA) strategies and subjective assessment for the diagnosis of early stage ovarian malignancy. Methods: This is a secondary analysis of a prospective multicenter cross-sectional diagnostic accuracy study that included 1653 patients recruited at 18 centers from 2009 to 2012. All patients underwent standardized transvaginal ultrasonography by experienced ultrasound investigators. We assessed test performance of the IOTA Simple Rules (SRs), Simple Rules Risk (SRR), the Assessment of Different NEoplasias in the adneXa (ADNEX) model and subjective assessment to discriminate between stage I-II ovarian cancer and benign disease. Reference standard was histology after surgery. Results: 230 (13.9%) patients proved to have stage I–II primary invasive ovarian malignancy, and 1423 (86.1%) had benign disease. Sensitivity and specificity with respect to malignancy (95% confidence intervals) of the original SRs (classifying all inconclusive cases as malignant) were 94.3% (90.6% to 96.7%) and 73.4% (71.0% to 75.6%). Subjective assessment had a sensitivity and specificity of 90.0% (85.4% to 93.2%) and 86.7% (84.9% to 88.4%), respectively. The areas under the receiver operator characteristic curves of SRR and ADNEX were 0.917 (0.902 to 0.933) and 0.905 (0.920 to 0.934), respectively. At a 1% risk cut-off, sensitivity and specificity for SRR were 100% (98.4% to 100%) and 38.0% (35.5% to 40.6%), and for ADNEX were 100% (98.4% to 100%) and 19.4% (17.4% to 21.5%). At a 30% risk cut-off, sensitivity and specificity for SRR were 88.3% (83.5% to 91.8%) and 81.1% (79% to 83%), and for ADNEX were 84.5% (80.5% to 89.6%) and 84.5% (82.6% to 86.3%). Conclusion: This study shows that all three IOTA strategies have good ability to discriminate between stage I-II ovarian malignancy and benign disease

    External validation of the ovarian-adnexal reporting and data system (O-RADS) lexicon and the international ovarian tumor analysis 2-step strategy to stratify ovarian tumors into O-RADS risk groups.

    Get PDF
    IMPORTANCE: Correct diagnosis of ovarian cancer results in better prognosis. Adnexal lesions can be stratified into the Ovarian-Adnexal Reporting and Data System (O-RADS) risk of malignancy categories with either the O-RADS lexicon, proposed by the American College of Radiology, or the International Ovarian Tumor Analysis (IOTA) 2-step strategy. OBJECTIVE: To investigate the diagnostic performance of the O-RADS lexicon and the IOTA 2-step strategy. DESIGN, SETTING, AND PARTICIPANTS: Retrospective external diagnostic validation study based on interim data of IOTA5, a prospective international multicenter cohort study, in 36 oncology referral centers or other types of centers. A total of 8519 consecutive adult patients presenting with an adnexal mass between January 1, 2012, and March 1, 2015, and treated either with surgery or conservatively were included in this diagnostic study. Twenty-five patients were excluded for withdrawal of consent, 2777 were excluded from 19 centers that did not meet predefined data quality criteria, and 812 were excluded because they were already in follow-up at recruitment. The analysis included 4905 patients with a newly detected adnexal mass in 17 centers that met predefined data quality criteria. Data were analyzed from January 31 to March 1, 2022. EXPOSURES: Stratification into O-RADS categories (malignancy risk <1%, 1% to <10%, 10% to <50%, and ≥50%). For the IOTA 2-step strategy, the stratification is based on the individual risk of malignancy calculated with the IOTA 2-step strategy. MAIN OUTCOMES AND MEASURES: Observed prevalence of malignancy in each O-RADS risk category, as well as sensitivity and specificity. The reference standard was the status of the tumor at inclusion, determined by histology or clinical and ultrasonographic follow-up for 1 year. Multiple imputation was used for uncertain outcomes owing to inconclusive follow-up information. RESULTS: Median age of the 4905 patients was 48 years (IQR, 36-62 years). Data on race and ethnicity were not collected. A total of 3441 tumors (70%) were benign, 978 (20%) were malignant, and 486 (10%) had uncertain classification. Using the O-RADS lexicon resulted in 1.1% (24 of 2196) observed prevalence of malignancy in O-RADS 2, 4% (34 of 857) in O-RADS 3, 27% (246 of 904) in O-RADS 4, and 78% (732 of 939) in O-RADS 5; the corresponding results for the IOTA 2-step strategy were 0.9% (18 of 1984), 4% (58 of 1304), 30% (206 of 690), and 82% (756 of 927). At the 10% risk threshold (O-RADS 4-5), the O-RADS lexicon had 92% sensitivity (95% CI, 87%-96%) and 80% specificity (95% CI, 74%-85%), and the IOTA 2-step strategy had 91% sensitivity (95% CI, 84%-95%) and 85% specificity (95% CI, 80%-88%). CONCLUSIONS AND RELEVANCE: The findings of this external diagnostic validation study suggest that both the O-RADS lexicon and the IOTA 2-step strategy can be used to stratify patients into risk groups. However, the observed malignancy rate in O-RADS 2 was not clearly below 1%

    Viele Adnextumoren lassen sich konservativ angehen

    No full text

    Uterine ultrasound and endometrial biopsy in tamoxifen users.

    No full text
    status: publishe

    Outcome after CPR: when we cannot save lives, we can save organs

    No full text
    corecore